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EDITOR-IN-CHIEF’S WORD
Dear readers,
In its determination to bring you closer to the activities 
and works of its members the Croatian Academy of En-
gineering is traditionally publishing our HATZ Bulletin Engineering Power (Vol. 13/2018) whose 
guest editor as a member of our Academy is presenting his achievements in his field of expertise.

As the Academy in its commitment insists on multidisciplinarity without which it is difficult to imagine inclusion in 
the already existing level of Industry 4.0 we have asked our distinguished member of the Croatian Academy of En-
gineering, Department of Systems and Cybernetics and a distinguished Associate Professor at the Faculty of Electri-
cal Engineering and Computing of the University of Zagreb, that he as guest editor presents some of his achievements 
in a computer approach to some areas of artificial intelligence.
I believe that you will find appropriate interest and new knowledge in this field.

Editor-in-Chief 
Vladimir Andročec, President of the Croatian Academy of Engineering

EDITOR’S WORD
This issue of the HATZ Bulletin Engineering Power continues to present multidisciplinary research 
activities of the Academy members that are actual and have wide application areas, and thus they syn-
thesise a number of advanced scientific disciplines and exert significant influence on numerous modern 
living areas. Guest Editor is Tomislav Pribanić, Ph.D., Associate Professor, Faculty of Electrical Engi-
neering and Computing, University of Zagreb, associate member of the Academy and Head of one of 
the laboratories of the Center for Excellence for Computer Vision (CRV) at the same Faculty.

Editor 
Zdravko Terze, Vice-President of the Croatian Academy of Engineering

FOREWORD
A large part of present technological achievements results from research and continuing advances 
in the field of artificial intelligence (AI). AI is a part of computer science that aims to create in-
telligent machines, capable of thinking, acting and learning like humans. It is an interdisciplinary 
field spanning a variety of subfields, among which machine learning (ML) and computer vision 
(CV) are generally regarded as core parts of AI. CV is a field that aims to give the computer visual 
understanding of the world from images. ML is a field of study that gives computers the ability 

to learn how to solve a certain task. It is particularly suited for problems that may seem relatively simple for humans, 
but are rather difficult to solve by using classical image processing approaches. CV and ML fields have a significant 
overlap where many CV problems can be solved using ML techniques.
Several papers listed below present a part of CV and related ML research conducted by experts from two laboratories 
of the Center of Excellence for Computer Vision (CRV) at the University of Zagreb Faculty of Electrical Engineering 
and Computing and also by CRV collaboration researchers. The first laboratory involved is Human-oriented Tech-
nologies Laboratory (HOTLab) led by Prof. Igor S. Pandžić, Ph.D., while the second laboratory involved is Advanced 
Shape Reconstruction and Registration Laboratory (SHARK Lab) led by Tomislav Pribanić, Ph.D., Associate Prof.
Nowadays one heavily studied ML application is certainly face analysis (FA) presented in one of the papers below. Appli-
cations of FA technologies range from marketing and entertainment to automotive industry in which, for instance, the goal 
is fatigue detection for vehicle driver. Another paper presented discusses two thoroughly researched CV tasks: object local-
ization and semantic segmentation. The former attempts to find objects in the input image, where minimum bounding rec-
tangle of the object and the associated object class are the ideal output. The latter is somewhat more detailed where each 
image pixel is assigned to the corresponding class label. Interesting applications can be found in traffic control systems and 
medical imaging. The next paper presents ML in the context of image categorization and image similarity whereby a com-
mercial service was developed, enabling buyers of certain products to find visually similar objects of interest. The camera is 
the essential tool used in CV. For numerous geometry related tasks the camera requires calibration which affects many ap-
plications such as geocoding, as explained in another paper. A geometrically calibrated camera is a basis for the 3D passive 
and 3D active reconstruction system too. 3D scanning systems are extensively used in fashion design and development and 
medical applications such as human back surface analyses. The last two papers put emphasis on those two applications.

Guest-Editor 
Tomislav Pribanić, University of Zagreb Faculty of Electrical Engineering and Computing
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Abstract

Face analysis systems have recently gained popularity due 
to the large number of potential applications across a wide 
range of industries. Various types of information can be 
extracted from an image of a face including: face location 
and size, location of characteristic facial landmark points, 
3D head pose, facial expression and emotion, gaze direc­
tion and biometric information (i.e. age, gender and race). 
Most of these problems are solved using machine learning 
techniques based on large sets of training samples. Fur­
thermore, information from these different tasks is often 
complementary and can be used to enhance the accuracy 
of the algorithms. A systematic overview of current ap­
proaches to face analysis tasks is presented as an intro­
duction to this growing research field.

1. Introduction

Applications of Face Analysis (FA) technologies span nu-
merous and diverse industrial and commercial fields.

Currently the most common applications are found in 
marketing and entertainment, based on the novelty 
and fun effect of FA, usually combined with 3D graphics, 
such as the popular face masks in Snapchat and similar 
apps. Numerous major brands have used FA effects in 
their online marketing campaigns. Furthermore, products 
such as make-up, glasses or even hats and earrings, use 
virtual try-on applications for promotion and testing. 
Many such applications allow direct purchasing. In phys-
ical retail spaces, experiments are starting to analyze 
customer behavior and shopping patterns using cameras 
placed in shops or shop windows. In marketing re-
search, analysis of subjects’ gaze patterns and emotion-

al reactions has traditionally been performed in on-site 
studies using specialized gaze tracking hardware and 
requiring large number of subjects. The new generation 
of marketing research technology uses FA software to 
perform similar research with subjects participating from 
home (being paid as micro-workers), dramatically reduc-
ing cost and increasing speed and scale of possible re-
search. Automotive industry has been deploying various 
forms of fatigue detection in heavy commercial vehicles 
and, more recently, in cars. However, the use of FA for 
driver monitoring is still in fairly early stages and we 
expect to see much more widespread deployment in 
years to come. Furthermore, there is interest in other uses 
of FA such as controlling the information system or au-
tomatic personal adjustments in high-end cars. By mon-
itoring operators of various types of machinery (e.g. 
forklifts), FA can help increase industrial safety. As-
sistive technologies help people with disabilities per-
form various tasks by using limited movement such as 
gaze or head motion. Biometrics based on face recogni-
tion is increasingly deployed for access control (e.g. to 
financial services). To avoid trivial fraud by submitting 
a picture instead of the live face, such applications de-
ploy liveness detection techniques based on FA. Ubiqui-
tous computing power and variety of available sensors 
are already changing the way we treat health, allowing 
simplified and more widespread monitoring and diagnos-
tics through inexpensive devices and apps. FA technolo-
gies play a role in this trend, with experimental or pro-
totype applications for remote fever detection, posture 
monitoring, concussion diagnostics and others. Further 
applications of FA include robotics, where it allows ro-
bots to interact with humans, and advanced audio sys-
tems that use 3D head position to deliver perfect sound 
to the listener.
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2. General Face Analysis Framework

A typical face analysis framework can be viewed as 
a  pipeline consisting of several steps. As in many 
other image analysis frameworks, the first step is object 
(face) detection. The face detection step is usually 
followed by preprocessing, face alignment, feature 
extraction, and attribute prediction steps, sequentially 
(Figure 1).

2.1. Face Detection

In the proposed framework pipeline, initial face detec-
tion step is semi-decoupled from other steps as it results 
in basic face location and scale information, usually pro-
vided via a facial bounding box. Even though the bound-
ing box information is most basic, different versions of 
face detectors can be trained with differently defined 
bounding boxes and can results in different detection 
qualities, thus introducing bias and propagating the error 
to the rest of the pipeline. To some extent, this can be 
alleviated in a preprocessing step and by introducing 
perturbation augmentations to the training set. Most 
widely used face detection systems are based on the 
work of Viola and Jones [1] and, more recently, deform-
able parts models [2] and single shot detection systems 
[3]. More details on face detection methods can be found 
in [4]

2.2. Preprocessing

Depending on the face analysis method, the preprocess-
ing step can be as trivial as image cropping based on the 
facial bounding box. Typical minimal preprocessing 
techniques also include resizing and color conversions. 
To deal with low contrast and lighting problems, addi-
tional preprocessing techniques such as histogram equal-
ization, Difference of Gaussians filtering, and edge en-
hancement filtering (e.g. Sobel filtering) can be 
incorporated.

2.3. Face Alignment

To compensate for face detector inaccuracies and to deal 
with misaligned faces captured in unconstrained con
ditions, various alignment techniques have been pro-
posed. Most basic method rests on face detection confi-
dence. The input image is rotated by a small angle 

multiple times and the version with the highest detection 
confidence is used. Although computationally expen-
sive, this simple method does not introduce any new 
components (existing face detection system is reused) 
and can result in a satisfying performance. More com-
plex methods rely on facial landmark point detection 
methods. Given a set of detected landmark points, in-
plane rotation and scaling can be performed based on 
eye points locations, Procrustes Analysis transform or 
3D face model fitting.

2.4. Feature extraction

It is well known that any classifier is only as good as the 
data it works with. This applies to all types of face anal-
ysis systems, therefore in many cases making the feature 
extraction step the most important one. Geometric fea-
ture extraction, which is based on fiducial distance meas-
urements, heavily relies on precise facial landmark 
points detection. Geometric features can be reliable in 
3D use-cases, yet in the case of 2D images, their practi-
cality is usually restricted to constrained frontal neutral 
faces. Appearance-based features consist of pixel values 
or their transformations, thus making them more suitable 
for 2D image use. While raw pixel values can be used 
directly as an input for classification and regression sys-
tems, more elaborate approaches such as Local Binary 
Patterns (LBP), Biologically Inspired Features (BIF), 
Haar-like features, Histogram of Oriented Gradients 
(HOG) features, speeded up robust features (SURF), and 
Gabor filters are commonly used.

2.5. Attribute prediction

In this work, attribute prediction refers to classification 
and regression tasks related to expression, age, gender, 
and race prediction. Binary classification is commonly 
used for gender classification and simple race classifiers 
(e.g. Asian/Non-Asian, White/Black). Multi-class classi-
fication is used for face expression and age group clas-
sifiers, and in some cases for exact age prediction (e.g. 
100 classes, one for each year). Regression is a natural 
(but not necessarily optimal) choice for exact age esti-
mation. Han et al. combined classification and regres-
sion in their proposed hierarchical estimator consisting 
of a between-group classification and a within-group 
regression in [5].

Some methods, most notably neural networks, perform 
multiple steps in a joint manner. Deep Convolutional 
Neural Networks (DCNN) combine feature extraction 
and attribute prediction steps together to learn optimal 
feature extractors and model high-level abstractions 
from the data. Due to their flexibility, DCNNs can be 
used for classification, regression or for more elaborate 
combinations of those two approaches.

Fig. 1. General face analysis framework
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3. Face Alignment

Face alignment is the process of determining the location 
of characteristic facial features or landmarks (points that 
delineate eyes, nose, mouth, eyebrows, chin and face 
contour) given a face image. The configuration of facial 
landmarks is also usually referred to as face shape which 
is represented as a vector of 2D landmark coordinates. 
Various machine learning algorithms are employed in 
order to estimate the face shape. If we denote it with 
S = (x1, y1,..., xL, yL) where L represents the number of 
landmarks, the goal of face alignment, given a face im-
age, is to find a shape S closest to the ground truth shape 
S*. More formally, the goal is to minimize:

	 ||S − S*||	 (1)

where ||· || is a suitable vector norm. The alignment error 
in (1) is used as a performance measure that drives the 
training process.

Regression methods estimate the face shape directly 
from image features and have recently demonstrated su-
perior accuracy, speed and robustness when compared to 
earlier, traditional methods that involve Active Appear-
ance Models, Active Shape Models and local part clas-
sification using search algorithms. Such constructed 
models demonstrate poor ability to express all combina-
tions of face variations due to expressions, illumination 
and head pose [6].

Regression methods can be roughly divided into four cat-
egories: constrained regression, cascaded regression, deep 
learning, and head pose and occlusion methods. Con-
strained regression methods estimate landmark positions 
individually, then additionally ensure a probable face con-
figuration. However, in cascaded regression framework, 
an implicit face shape constraint is incorporated into the 
training process. This framework is currently the standard 
approach to face alignment. Recently, with advances in 
computing power and optimization techniques, Convolu-
tional Neural Networks (CNN) have been applied to face 
alignment as part of the deep learning category. With the 
growing success of cascaded regression and deep learning 
methods, face alignment in more challenging conditions 
has become the focus area for researchers as part of the 
head pose and occlusion category.

Cascaded regression has established itself as the leading 
approach for face alignment due to its speed, robustness 
and accuracy. In this framework, a number of regressors 
(R1 ,...,Rt ,...,RT) are successively applied starting from 
the initial shape estimate S0. Given an image I, each re-
gressor learns and estimates a shape increment δS and 
updates the face shape:

	 δS = Rt (I,St−1)	 (2)

	 St = St−1 + δS	 (3)

where the tth regressor Rt updates the previous shape St−1 
to the new shape St (Cao et al. 2014). It is important to 
note that the tth regressor depends on the previous shape 
estimate St−1. The dependency is usually through 
shape-indexed features which is a concept first intro-
duced in [7]. These features are stored relative to the 
object pose and are thus consistent across large pose 
variations.

4. Facial Expression Recognition

In order to automatically recognize emotions and their 
related expressions, an investigation on how to define 
those terms needed to be done first. In [8], Ekman and 
Friesen discovered six basic or prototypic emotions (an-
ger, disgust, fear, happiness, sadness, and surprise) 
whose facial expressions are culturally and racially in-
variant and are, therefore, great candidates for automat-
ic systems which need clear categories. However, one 
important drawback of this model became evident. It is 
too crude to accurately model the complexity of emo-
tions people experience in everyday lives. As a response, 
Facial Action Coding System (FACS) was developed in 
order to define atomic facial muscle movements named 
Action Units (AU) spanning the whole spectrum of hu-
man facial expressions. Its aim is objectivity in the signal 
measurement which is separated from the final expres-
sion classification often influenced by the context. Con-
sequentially, a group of researchers tried to develop al-
gorithms that recognize these simpler, intermediate 
categories and synthesize the final expression afterward. 
However, FACS annotation is a very tedious process 
which requires expert knowledge few people poses. 
Therefore, few data sets with full FACS annotations are 
available to the community. The six basic expressions 
classification approach is currently the most widely used 
categorization in computer vision.

The features used for Facial Expression Recognition 
(FER) can roughly be divided into appearance and ge-
ometric-based. The appearance features are extracted 
from facial image intensities to represent a discrimina-
tive textural pattern while the geometric ones need ac-
curate landmark positions from which different relations 
can be constructed. The geometric features are, however, 
very sensitive to the individual face shape configuration 
and are therefore less consistent in person independent 
scenarios.

Well known and widely successful hand-crafted features 
such as variations of Local Binary Patterns (LBP) and 
Histogram of Oriented Gradients (HOG), Gabor filters 
and Local Phase Quantization (LPQ) descriptors have 
also been considered for FER. While most approaches 
considered a regular grid of patches or the whole face 
region for feature extraction, there have been advances 
in determining common and specific salient facial re-
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gions for each expression. In [9], Happy and Routray 
demonstrated the importance of facial landmark detec-
tion in order to find the salient patches from which they 
extract features.

On the other hand, a number of researchers tried to fuse 
different texture encoding features in order to extract com-
plementary information that would benefit the FER. For 
instance, Zhang et al. used multiple kernel learning to 
combine two feature representations: HOG and LBP [10].

While all of the previously mentioned methods use 
hand-crafted and heuristically determined features, ex-
periments with deep learning using CNN on the FER 
problem were recently conducted as well. However, 
deep learning methods have serious over-fitting prob-
lems with small datasets that are typical for FER. Lopes 
et al. tried different preprocessing techniques (image 
normalizations, synthetic samples etc.) in order to cope 
with the mentioned problem and were able to achieve 
state-of-the-art results on the CK+ benchmark dataset 
[11]. Even though real-time performance is claimed, a 
high-end GPU is needed in order to achieve it.

An additional direction of research is to integrate tem-
poral dimension into both appearance and geometric 
features when working with image sequences.

5. Biometric Attributes Estimation

Biometrics refers to the problem of subject identification 
based on a certain unique physical characteristic (i.e. 
fingerprint, iris or face). On the other hand, soft biome-
tric attributes are traits such gender, height, and eye color 
that provide some useful information about the subject, 
but are not distinctive enough to perform identification 
[12]. The intrusiveness of biometric systems based on 
fingerprint or iris recognition reduces their applicability 
compared to systems based on facial image analysis that 
do not require physical contact, subject’s cooperation nor 
subject’s attention. Three most prominent and widely 
researched soft biometric attributes that can be estimated 
from facial images are gender, age and race.

5.1. Gender classification

Gender classification is a fundamental soft biometric attrib-
ute estimation task. Due to the significance of gender at-
tribute, availability of public face datasets with gender la-
bels, and simplicity of the task itself (binary classification), 
it was a recurrent topic in early work on facial analysis.

In 1991., human performance was matched by a simple 
multi-layer perceptron system named SexNet [13]. By 
directly using pixel values as features, they achieved ac-
curacy of 91.9% on a manually collected dataset con-
taining 90 images.

Discriminative properties of 7 different facial regions 
were evaluated on a dataset containing 800 frontal faces 
in [14]. Periocular region was shown to be the most 
informative and their multi-region method based on 
upper face region, left eye, and nose yielded a 5% lower 
classification error compared to the holistic face 
approach.

A step further was taken in [15]. Local discriminative 
DNNs were applied to the most informative facial re-
gions determined by Sobel filtering, blurring and binari-
zation. Experiments were performed on the aligned ver-
sion of LFW dataset with 13,233 images and a subset of 
the even more difficult Groups dataset containing 14,760 
images. Evaluation on large unconstrained datasets 
demonstrated in-the-wild effectiveness and cross-data-
base experiments verified the generalization capability 
of the proposed approach.

Despite using a simpler holistic-face approach, previous-
ly mentioned methods were outperformed by a 
straight-forward CNN approach trained on 500k images 
[16]the problem of gender recognition from face images 
remains difficult when dealing with unconstrained imag-
es in a cross-dataset protocol. In this work, we propose 
a convolutional neural network ensemble model to im-
prove the state-of-the-art accuracy of gender recognition 
from face images on one of the most challenging face 
image datasets today, LFW (Labeled Faces in the Wild, 
demonstrating the power of CNNs.

5.2. Age estimation

Age estimation is one of the most challenging and broad-
ly researched topics in the face analysis field. Early 
work was primarily based on geometric features, ageing 
pattern subspaces or manifold learning. A drawback 
of  the  mentioned approaches is that they require a 
well-aligned frontal faces. This section focuses on appear-
ance-based methods that are more suited for unconstrained 
faces.

Age estimation can be viewed as a multi-class classifi-
cation or a regression problem. Recently, the label dis-
tribution method is frequently used as it combines best 
of the two approaches. Age estimation typically refers to 
the real (chronological, biological) age estimation. Ap-
parent age estimation is a more recent endeavor, refer-
ring to age estimation as perceived by other humans. 
Apparent age estimators are trained on datasets where 
there is no ground truth real age but instead, a group of 
people was guessing the subject’s age.

A seminal real age estimation method based on Biolog-
ically Inspired Features (BIF) was proposed in [17]. 
Their variation of BIF used Gabor filters to model re-
ceptive fields and MAX and STD operations as sources 
of nonlinearity. PCA was used for dimensionality reduc-
tion, followed by a linear SVM in case of age classifi-
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cation or a support vector regressor (SVR) in case of age 
regression experiments. Their approach outperformed all 
previous work on the FG-NET benchmark, and was a 
basis for a number of BIF-related age estimation meth-
ods.

Comparison of hand-crafted and learned features under 
the same experimental settings was performed in [18]. 
Their exhaustive experiments showed that a simple CNN 
with only 2 feature-extracting convolutional layers can 
outperform different combinations of hand-crafted fea-
tures (i.e. HOG, LBP and SURF).

Power of CNNs was further demonstrated in [19]. Their 
age estimation approach was based on an ensemble of 
20  VGG-16 models pretrained for the task of image 
classification. The networks were trained for classifica-
tion  with 101 output neurons, each corresponding to 
an  age from interval 0-100. The final prediction was 
the  softmax-normalized output of those neurons, aver-
aged  over the 20 networks. An impressive error drop 
was achieved by additional pretraining on their large and 
noisy IMDB-WIKI dataset, improving the state-of-the-art 
by a large margin. By performing additional fine-tuning 
on the apparent age LAP dataset, they also achieved top 
score on the first edition of the ChaLearn apparent age 
challenge.

5.3. Race classification

In the face analysis research field, terms ethnicity and 
race are often used interchangeably. However, they are 
related to sociological and biological factors respective-
ly. Generally, ethnicity is viewed as a cultural concept, 
while race refers to the person’s physical appearance or 
characteristics and is a better suited term for classifica-
tion based on facial images. Categorization to 7 com-
monly accepted racial groups covers more than 95\% of 
the world population. However, due to the scarcity of 
public datasets with racial annotations and good sample 
distribution, most of the race classification research is 
done on simple binary (e.g. Asian/non-Asian, White/
Black) or ternary (e.g. Caucasian/African American/
Asian) classification.

Following the success of deep neural networks in many 
other face analysis fields, Wang et al. [20] showed supe-
rior performance of their DCNN method on both binary 
and ternary race classification tasks. Their approach was 
based on CIFAR-10 CNN architecture with a n-way soft-
max layer. A cross-entropy loss was used during the 
training and the networks were trained for 3 different 
scenarios: (i) classification of White and Black subjects, 
(ii) classification of Chinese and Non-Chinese subjects, 
and (iii) classification of Han, Uyghur, and Non-Chinese 
subjects. To deal with the lack of public large-scale race 
analysis databases, they worked with different combina-
tions of several public face analysis datasets and addi-

tional private datasets. For all 3 scenarios, they reported 
classification accuracies from 99.4% to 100%.

6. Conclusion

Recent progress in development of Face Analysis (FA) 
technologies created an opportunity for many new inno-
vative commercial application fields. Like in many oth-
er computer vision fields, trend towards adoption of 
CNNs and deep learning is obvious, but in many cases 
inference speed and memory requirements are neglected. 
Additionally, the lack of dedicated large-scale datasets 
becomes more obvious due to the overfitting problems. 
In most cases, FA methods focus on estimation of a sin-
gle attribute from a single image. Integrating the tempo-
ral dimension and solving multiple tasks jointly could 
increase the algorithms performance.

References

[1]	 P. Viola and M. Jones, “Robust real-time face detection,” Int. 
J. Comput. Vis., vol. 57, no. 2, pp. 137–154, 2004.

[2]	 M. Mathias, R. Benenson, M. Pedersoli, and L. Van Gool, 
“Face detection without bells and whistles,” Lect. Notes Com­
put. Sci., vol. 8692 LNCS, no. PART 4, pp. 720–735, 2014.

[3]	 W. Liu et al., “SSD: Single shot multibox detector,” Lect. 
Notes Comput. Sci., vol. 9905 LNCS, pp. 21–37, 2016.

[4]	 C. Zhang and Z. Zhang, “A Survey of Recent Advances in 
Face Detection,” Microsoft Res., no. June, p. 17, 2010.

[5]	 H. Han, C. Otto, X. Liu, and A. K. Jain, “Demographic Es-
timation from Face Images: Human vs. Machine Perfor-
mance,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, 
no. 6, pp. 1148–1161, Jun. 2015.

[6]	 X. Cao, Y. Wei, F. Wen, and J. Sun, “Face alignment by 
explicit shape regression,” Int. J. Comput. Vis., vol. 107, no. 
2, pp. 177–190, 2014.

[7]	 P. Dollár, P. Welinder, and P. Perona, “Cascaded pose regres-
sion,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern 
Recognit., pp. 1078–1085, 2010.

[8]	 P. Ekman and W. V. Friesen, “Constants across cultures in 
the face and emotion.,” J. Pers. Soc. Psychol., vol. 17, no. 
2, pp. 124–129, 1971.

[9]	 S. L. Happy and A. Routray, “Automatic facial expression 
recognition using features of salient facial patches,” IEEE 
Trans. Affect. Comput., vol. 6, no. 1, pp. 1–12, Jan. 2015.

[10]	 X. Zhang, M. H. Mahoor, and S. M. Mavadati, “Facial ex-
pression recognition using  l p -norm MKL multiclass-SVM,” 
Mach. Vis. Appl., vol. 26, no. 4, pp. 467–483, May 2015.

[11]	 A. T. Lopes, E. de Aguiar, A. F. De Souza, and T. Olivei-
ra-Santos, “Facial expression recognition with Convolution-
al Neural Networks: Coping with few data and the training 
sample order,” Pattern Recognit., vol. 61, pp. 610–628, 
2017.

[12]	 C. B. Ng, Y. H. Tay, and B. M. Goi, “A review of facial 
gender recognition,” Pattern Anal. Appl., vol. 18, no. 4, pp. 
739–755, 2015.



Vol. 13(1) 2018  –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––   7

[13]	 B. A. Golomb, D. T. Lawrence, and T. J. Sejnowski, “Sexnet: 
A neural network identifies sex from human faces,” Adv. 
Neural Inf. Process. Syst. 3, no. July, pp. 572–7, 1991.

[14]	 L. L. L. Lu, Z. X. Z. Xu, and P. S. P. Shi, “Gender Classifi-
cation of Facial Images Based on Multiple Facial Regions,” 
WRI World Congr. Comput. Sci. Inf. Eng., vol. 6, pp. 48–52, 
2009.

[15]	 J. Mansanet, A. Albiol, and R. Paredes, “Local Deep Neural 
Networks for gender recognition,” Pattern Recognit. Lett., 
vol. 70, pp. 80–86, 2016.

[16]	 G. Antipov, S. A. Berrani, and J. L. Dugelay, “Minimalis-
tic CNN-based ensemble model for gender prediction from 
face images,” Pattern Recognit. Lett., vol. 70, pp. 59–65, 
2016.

[17]	 G. Guo, G. Mu, Y. Fu, and T. S. Huang, “Human age esti-
mation using bio-inspired features,” 2009 IEEE Comput. 
Soc. Conf. Comput. Vis. Pattern Recognit. Work. CVPR 
Work. 2009, pp. 112–119, 2009.

[18]	 I. Huerta, C. Fernández, C. Segura, J. Hernando, and A. Pra-
ti, “A deep analysis on age estimation,” Pattern Recognit. 
Lett., vol. 68, pp. 239–249, 2015.

[19]	 R. Rothe, R. Timofte, and L. van Gool, “Deep Expectation 
of Real and Apparent Age from a Single Image Without 
Facial Landmarks,” Int. J. Comput. Vis., pp. 1–14, 2016.

[20]	 W. Wang, F. He, and Q. Zhao, “Biometric Recognition,” vol. 
9967, pp. 176–185, 2016.



8  ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––   Engineering Power

Ivan Krešo, Petra Bevandić, Marin Oršić, Siniša Šegvić

Convolutional Models for Segmentation and Localization

University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia

Abstract

The revival of deep models has profoundly improved the 
accuracy of image classification models and provided a 
large improvement potential in related computer vision 
tasks. Recently, much attention has been directed to­
wards dense prediction models which produce distinct 
output in each image pixel. This paper addresses two 
particular instances of dense prediction: object loca­
lization and semantic segmentation. We briefly review 
the underlying operation principles, present some of 
our experimental results and discuss ways to analyze the 
success of learning and the utility of the resulting mod­
els.

1. Introduction

Recent revival of deep learning has enabled construction 
of multi-stage computer vision algorithms in which all 
stages can be trained end-to-end. Most success has been 
achieved with convolutional models [14] which ensure 
translational invariance as an essential property of vi-
sion. The resulting development has led to artificial vi-
sion systems which outperform humans in large-scale 
image classification [23]. This progress has been stead-
ily followed by advances in other vision tasks. Thus, it 
has been noticed that semantic segmentation can be car-
ried out by applying the same ImageNet pre-trained clas-
sification model in each pixel (cf. Fig.1). The implied 
computational complexity has been reduced by applying 
the model layerwise (as opposed to patchwise), in a con-
volutional manner [24].

However, it turns out that straight-forward convolution-
al application of a classification model results in a sig-
nificant reduction of the output resolution. Consequent-
ly, a  smooth transition from classification to dense 
prediction is hampered by strict memory limitations of 
contemporary GPUs as we shall show in the following 
sections.

2. Semantic segmentation

Semantic segmentation is a computer vision task in 
which we classify each image pixel into the correspond-
ing high-level class. The ground-truth class labels are 
determined by the kind of the object or surface which 
gets projected onto the corresponding pixel. Due to be-
ing complementary to object localization, semantic seg-

mentation represents an important step towards advanced 
future techniques for natural image understanding. Some 
attractive application fields include autonomous control, 
intelligent transportation systems and automated analy-
sis of photographs and video.

2.1. Architectural considerations

When designing an architecture for semantic segmenta-
tion we usually start with a network created for image 
classification. This allows to pretrain the model on the 
ImageNet dataset, which typically leeds to best results. 
In image classification task, the model output is a vector 
representing the distribution over classes for the whole 
image. In order to repurpose any classification architec-
ture for segmentation, we need to remove the global 
pooling at the end and replace all fully connected layers 
with convolutions. However, due to intermediate pool-
ing layers, we still get a 32x subsampled prediction. 
There are two ways to restore the lost resolution and get 
predictions at the pixel level. One way is to use interme-
diate feature maps before pooling layers in each block 

Fig. 1. A convolutional model is usually pre-trained on the Ima-
geNet dataset which comprises 106 images and 103 classes (top). 
The model can be easily adapted to a simpler task by fine-tuning 
on the target dataset (middle). The simplest approach to achieve 
dense prediction would be to slide the model over all image po-
sitions (bottom). In practice we optimize this idea by applying the 

model layerwise in a fully convolutional fashion [24].
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to recover lost information and refine boundaries in 
downsampled representation [26]. The other way is to 
remove pooling layers and introduce dilated convolu-
tions [3] that will preserve the same size of the receptive 
field. The main downside of the dilated convolution ap-
proach is its inefficiency due to large resolution of the 
deep layers with many feature maps. Another downside 
is that we are forcing the model to propagate even very 
small objects through all layers of the network, which 
leads to potentially losing some model capacity. The up-
side is its simplicity because it is the easiest way to con-
vert the network from classification to segmentation 
task. However, we can avoid the problems with dilated 
convolution and still achieve high prediction density by 
using ladder-style blending [26] which leverages inter-
mediate feature maps to restore the lost details. We have 
successfully used this technique to successfully convert 
the 32x subsampled representation to the 4x subsampled 
output [13]. Our upsampling subnet is very efficient and 
introduces only a negligible increase in running time. 
This is achieved by blending two feature tensors from 
different subsampling levels with a single 3x3 convolu-
tion. It turns out that the pretrained classification net-
work can very well adapt to this simple blending tech-
nique during fine-tuning.

2.2 Experiments on the Cityscapes dataset

We evaluated our models on the Cityscapes dataset [5] 
which consists of 5000 images with fine annotations and 
20000 images with coarse annotations. In our experi-
ments we used only the fine annotations. The dataset is 
labeled with 19 classes. The resolution of the images is 
1024x2048 (cf. Fig. 2).

The quality of semantic segmentation models is usually 
evaluated with intersection over union (IoU). For each 
class we consider pixels corresponding to the predictions 
and the ground-truth annotation. The IoU metric is then 
defined as the ratio between intersection and union of 
those two areas. Finally, we take the mean IoU across 
all classes or mIoU for short [8]. Table 1. shows our 
results on Cityscapes validation subset with models 
based on the DenseNet-121 architecture [10] pretrained 
on ImageNet. DenseNet 32x is the baseline model where 
a 32x subsampled prediction is produced right after the 
last DenseNet block. LadderDenseNet 4x uses lad-
der-style feature blending [13]. In Dilated 8x DenseNet 
4x we used dilated convolutions in the last two blocks 
to obtain 8x subsampled prediction followed by one lev-
el of ladder-style feature upsampling to produce 4x sub-
sampled output. Note that we couldn’t use dilated con-
volutions to directly obtain 4x prediction due to 
memory limitations. LadderDenseNet 4x outperforms 
Dilated 8x DenseNet 4x despite requiring less memory 
and leading to faster execution. The large improvement 
between DenseNet 32x and LadderDenseNet 4x reveals 
the importance of prediction density. We came to similar 
conclusions in experiments on PASCAL VOC 2012 and 
CamVid datasets

3. Object localization

The purpose of object localization is to find objects of 
various classes in the input image and describe them 
with bounding boxes and class labels. This task is chal-
lenging as objects may vary in size, shape, pose, occlu-
sion etc. Existing approaches fall into two groups. Two-
stage approaches first perform class-agnostic localization 
of object candidates. In the second stage, the candidates 
are classified one at a time. On the other  hand, single 
stage approaches produce dense predictions of bounding 
boxes and class labels in the compound processing step. 
Two stage approaches still achieve better accuracy, how-
ever we prefer single stage approaches due to simpler 
design and better execution speed.

3.1. Single shot detector

Single Shot Detector (SSD) [16] is the first one-stage 
approach to achieve accuracy comparable to two-stage 
approaches. It enables real time execution on 512x512 
images. SSD handles the problem of varying object size 
by making predictions at suitable layers of a deep image 
representation. The features are extracted by a convolu-
tional model consisting of the first 5 convolutional 
blocks from the VGG architecture [25] and 4 additional 
convolutional blocks. Each block subsamples the reso-
lution of the previous block by the factor of 2. The last 
6 levels of representation are connected to multibox 
heads which perform dense prediction of object classes 
and bounding box positions. Bounding box predictions 

Fig. 2. Original image from Cityscapes test (top) and the dense 
predictions (bottom) of our semantic segmentation model (purple: 
road, dark blue: bus, person: red, etc). Note that a commercial 
sticker on the bus has been erroneously segmented as class person. 
Although depicting persons, that particular region should be se-

gmented as class bus to which it semantically belongs.



10   ����������������������������������������������������������������������������   Engineering Power

are performed for multiple aspect ratios: {0.3, 0.5, 1, 
2, 3}.

3.2. Experiments on MOT 2015 dataset

We evaluated the SSD approach on MOT 2015 dataset 
[15]. We split each training sequence into train and val-
idation subsets such that the last 20% of images in each 
video are moved to the validation subset. This produces 
4334 training images and 1087 validation images (we 
omit images that do not have any ground truth detec-
tions). The training procedure was the same as for 
SSD300 [16]. We experimented by adding a prediction 
with a taller aspect ratio (due to the fact that pedestrians 
are usually in a standing pose) but that did not result in 
any significant improvement. We display the results in 
Table 1. We notice a large improvement when training 
SSD on MOT 2015 train rather than training on 20 object 
classes from PASCAL VOC 2007 + 2012. Note that the 
competing algorithms were not tuned on MOT2015: the 
presented improvement is due to opportunity to better fit 
our model to the data. This emphasizes the importance 
of learning on training data whose distribution matches 
the distribution of the test data.

Sample detections are shown in Figure 3. SSD achieves 
very good accuracy on large to medium sized object 
while occasionally having trouble with small or distant 
objects. The method also has troubles with predicting 
false positives as well as classifying an object to a wrong 
but similar class (eg. mistaking a sheep for a cow). Our 
current experiments show that such problems can be sig-
nificantly diminished with improved models. However, 
this research is still incomplete and so we will have to 
present it elsewhere.

4. Analysis of the learned models

Deep models achieve state-of-the-art performance in 
many computer vision tasks. However our understand-
ing on how and why those models work remains limited. 
Answering these questions would not only help us im-
prove on existing models (e.g. by understanding why 
deep models make mistakes), but also could play an im-
portant role in real-world application of deep models 
(e.g. anticipate legal implications of using deep models 
in practice).

4.1 Feature visualization

One way to answer how deep models work in a human 
friendly way is by using qualitative representations of 
different layers in a network. A simple example of qual-
itative analysis is visualization of filters in the first layer 
of convolutional networks. This approach is however not 
useful for units in deeper layers. A simple solution intro-
duced in [erhan09icmlw] is to look for input patterns that 
maximize the activation of a hidden unit rather than vis-
ualizing unit content directly. Defined this way, a feature 
h can be visualized by locating an image patch x* which 
maximizes its value given the model parameters f:

	 x* = argmax f.	 (1)

However, this definition opens up a new set of challeng-
es [olah17distill]. For example, how to choose a hidden 
unit? Is it more useful to do visualize a single neuron, a 
single feature map, or the whole layer? Is there more 
than one pattern that could represent what makes a unit 
fire (e.g. should a neuron responsible for detecting birds 
fire for both penguins and hummingbirds)? Furthermore, 
optimizing just to make units fire does not necessarily 
lead to interpretable visualizations. This method can also 
be used to generate examples that the network classifies 
into one of the possible classes with a high level of con-
fidence, without the input necessarily making visual 
sense to a human.

We can solve the problem of finding input patterns that 
maximize the activation of the hidden unit using gradient 
descent. We usually start from a randomly sampled im-
age, calculate gradient of the output of the hidden unit 
of interest with respect to the input, and finally apply the 
gradient to the input. However, basic gradient descent 
usually gives us uninterpretable images. This problem 
can be solved by expanding the original problem with a 
suitable regularizer. Results can be further improved by 
slightly perturbing the input between optimizations steps 
to make the final visualization more robust to image 
transformations. The most common perturbations are 
blurring, jittering, scaling and rotating the input before 
calculating the gradient. Fig. 4 shows different types of 
visualization for a DenseNet architecture fine-tuned for 
classification on VOC 2007.

Fig. 3. Pedestrian detections on MOT 2015 val obtained by an 
SSD model trained on MOT 2015 train. Note that only the smallest 

three pedestrians have been missed.
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Table 1. Semantic segmentation experiments on Cityscapes val. 
Sx denotes S times subsampled predictions which are 
subsequently upsampled with bilinear interpolation. All 
training and evaluation images in this experiment were 
resized to 1024×448, while the batch size was set to 4.

Model mIoU (%)

DenseNet 32x 62.52

Dilated 8x DenseNet 4x 71.56

LadderDenseNet 4x 72.82

Table 2. Object localization experiments on MOT 2015 val.

Model Average Precision

SSD, ImageNet + Pascal0712 
[liu16eccv] 57.06%

Agg. channel features, INRIA 
[dollar14pami] 60.2%

SSD, ImageNet + MOT 
2015(ours) 75.5%

4.2 Adversarial examples

Adversarial examples arise when a given image is pur-
posively modified in a way to disrupt the correct predic-
tion by the target model [2, 1]. If the model is not trained 
in a defensive manner, imperceptible perturbations can 
be crafted which cause the model to change its prediction 
away from the correct class y, while still reporting a high 
level of confidence. Suppose the model f provides a cor-
rect prediction in image xi: f(xi) = yi. Then, we can re-
cover the adversarial perturbation r by optimizing the 
following problem:

	 min || || . . ( ) ,r s t f yi i2 x r+ ≠  x ri
m+ ∈[ , ] .0 1

This problem can be solved by propagating the adver-
sarial gradients to the input image xi and subsequently 
optimizing xi with gradient descent. Adversarial images 
can be crafted for dense prediction models as well, as 
shown in Figure 5.

Following the discovery of adversarial examples, a num-
ber of exploits have been devised in literature, which, in 

theory, could seriously compromise practical computer 
vision applications. For instance, an attacker could wreak 
havoc in autonomous traffic by decorating stop signs 
with adversarial stickers [9]. However, a later study has 
shown that such threat could not be reproduced in more 
realistic localization experiments [17] where the traffic 
sign is observed from a variety of viewing directions. 
This is an important empirical finding since adversarial 
examples are not endemic to deep learning [22, 19]. In 
fact, virtually all existing vision systems based on learn-
ing (either shallow or deep) are vulnerable to adversari-
al attacks. Many of these systems will have to be upgrad-
ed in order to avoid successful exploits which are likely 
to arise in near future. Several recent papers offer inter-
esting solutions to this problem [hinton15arxiv, cis-
se17icml]. Some of them are able to learn on unannotat-
ed input images which implies they could be used to 
support semi-supervised learning [20]. A recent defen-
sive approach achieved almost complete resistance on 
CIFAR and MNIST datasets [18].

The study of adversarial examples is important even if 
we disregard the importance of preventing exploits. We 
know that existing deep models are prone to overfitting 
due to extremely high capacity [28]. Adversarial exam-
ples might lead us towards new regularization techniques 
that will improve the representation quality and further 
enhance the accuracy of the predictions.

5. Conclusion

We have reviewed deep convolutional models for se-
mantic segmentation and object localization in natural 
scenes and presented some of our own contributions in 
the field. Our experiments [13] were first to confirm the 
utility of the recently proposed DenseNet architecture 
[10] for dense prediction in large images. Our model is 
able to restore the resolution of the dense prediction by 
blending higher level features at lower spatial resolution 
with their lower-level higher-resolution counterparts 
[26]. Such ladder-style blending achieves high spatial 
accuracy with a very lean upsampling path which signif-
icantly relaxes memory requirements and enables re-
al-time processing of large natural images. We are cur-
rently able to process 2 Megapixel images (2048×1024) 
at 13 Hz on a single Titan X GPU with a model that 

a)            b)            c)            d)
Fig. 4. Different visualizations for DenseNet 121 fine-tuned on 
Pascal VOC 2007: filter #20 of the first convolution layer (a), 
input pattern that maximizes its activation (b), input patterns that 
maximize the class ‘bicycle’ (c,d). No regularization was used for 
generating (c), while for (d) we used jittering, scaling, rotating 

and blurring.

Fig. 5. Original image from Pascal VOC 2007 train (a) and the 
predictions (b) of our semantic segmentation model (green: cat, 
purple: background). Adversarial image (c) and the predictions 

(d) of the same model (red: dog, blue: sofa).
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achieves 75% mIoU on the Cityscapes test subset. Our 
current best result on Cityscapes test is 78.4% mIoU 
with a multi-resolution forward pass. These figures will 
improve when we complete our current experiments on 
the combined training dataset (fine and coarse images).
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Abstract

In this paper, we present two computer vision projects 
that were deployed as services for the Styria Media 
Group’s classifieds: hierarchical fine-grained image cat­
egorization and image similarity search. For image cat­
egorization, we generalize the previous accuracy vs. 
specificity approach to automatically offer sets having 
the best combined accuracy and specificity, instead of 
returning single element suggestions. We also modify the 
original specificity measure to be more appropriate for 
the classifieds use case: minimizing the number of re­
quired clicks to reach the desired leaf category. Further, 
we describe our approach of utilizing a deep learning 
classification model for another task: creating binary 
descriptors in an end-to-end manner to be used for im­
age similarity retrieval. To accomplish this task, we com­
bine various features from different parts of the network, 
use multimodal learning which combines images and 
text from classified’s ads, and finally, we employ triplet 
metric learning for color encoding.

1. Introduction

Styria, founded in 1869, is one of the leading media 
groups in Austria, Croatia, and Slovenia. As a part of the 
Styria Media Group, in early 2015, a team was formed 
to develop data science solutions for the entire group, 
combining natural language processing and computer 
vision research. Computer vision research and develop-
ment for the Classifieds Project started with a clear goal 
to improve user experience on both the buyers’ and the 
sellers’ side of the online sales process for the Styria 
Group’s classifieds (2nd hand marketplaces). The goal 
was to encourage users to do more ad placements and to 
have more productive searches. This would directly in-
crease the value of the classified for its users.

For the buyers’ side, the result of the project is a service 
called Fashion Cam, built for the Austrian Willhaben 
classified. The service enables buyers to find visually 
similar objects more easily. At first, the service was de-
veloped only for fashion but now also for furniture and 
antiques, with other categories soon to follow.

For the sellers’ side, the end result is automatic category 
suggestion based on one or more images, developed for 
the Njuskalo classified in Croatia. The service makes the 
ad posting process easier and faster for the sellers.

Both products were possible due to recent advances in 
deep learning [1], [2], specifically in Convolutional Neu-
ral Networks (CNNs) [3]. The progress in the field was 
facilitated by the availability of large amounts of labeled 
data, modern GPU advancements, and also by hosting 
large-scale visual recognition competitions in the aca-
demic community based on the ImageNet dataset [4].

2.	Hierarchical fine-grained image 
	 categorization

For the classifieds use case, it is common for the cate-
gories to be organized in a hierarchical manner into a 
specific category tree. Typically, there are multiple prob-
lems to handle: semantically similar categories in differ-
ent parts of the tree, highly uneven category distribu-
tions, label quality concerns, and also, issues related to 
the fine-grained nature of objects to be recognized. For 
such fine-grained use cases, there is a problem of large 
intra-class variance and at the same time, small in-
ter-class variance between some categories in the classi-
fied’s categorization tree. The fine-grained problem is an 
active area of research tackled on diverse datasets, e.g. 
Oxford Flowers [6], Oxford-IIIT Pet [7], Stanford Dogs 
[8], CUB200-2011[9] and Cars196 [10].

At first, the problem was approached as a standard leaf 
classification task. The CNN network was trained to pre-
dict confidences for each of the leaf categories, using the 
actual leaf categories that users had chosen when placing 
the ads as ground truth labels for each input image. For 
cases where there were multiple images for the same ad, 
confidence predictions were averaged to obtain more 
accurate results.

To return the final category suggestion to our client, a 
separate model was trained to suggest the best subset of 
up to 3 nodes in the classified’s categorization tree.

2.1. Architectures

The choice of the actual CNN architecture is determined 
by two factors: actual classification performance, and 
also by the required computational performance to be 
able to handle real-time classification requests. Current-
ly, the models in production use elements of the 
GoogLeNet [11], Darknet[12] and DenseNet[13] archi-
tectures.
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2.2. Revisiting the accuracy-specificity trade-off

When dealing with a hierarchical category structure, 
there is a possibility of returning one or more inner nodes 
in the categorization tree as the final category sugges-
tion, instead of just the most confident leaf. This enables 
gains in accuracy, at the cost of some specificity.

Our initial solution was adopted from the Hedging Your 
Bets paper [14]. The paper defines a measure of speci-
ficity for each of the tree nodes, which enables joined 
confidence and specificity node scoring. The final cate-
gory suggestion is the node having the maximum score.

Still, since there are cases of semantically similar cate-
gories in distant parts of the categorization tree, in many 
cases it would be best to offer all similar suggestions. 
The main limitation of the original HYB algorithm is 
that it could only offer one node suggestion. This would 
result in missing some of the legitimate suggestions, or 
moving back all the way to the common ancestor too 
close to the root of the categorization tree.

To solve these issues, we redesigned the original algo-
rithm to generalize scoring to sets of nodes. This re-
quired a redefined specificity measure, which was also 
more appropriate for the final use case: minimizing the 
number of clicks that the user would have to take from 
our suggestions to the desired leaf category.

2.3. Categorization examples

Figures 3. and 4. showcase our category suggestions. 
Note that in the first case (Figure 3.) “hand tools” appear 
at two different places in the categorization tree. The 
second case illustrates a typical situation when it makes 
sense to offer both men’s and women’s categories (Fig-
ure 4).

3.	Custom and fast visual search 
	 for real world images

For the Fashion Cam service and image similarity search 
in general, the biggest problem is the definition of sim-
ilarity itself. There is always a semantic component, cor-
responding to the classified’s leaf category the ad was 
placed in. Other aspects are more visual: material, shape, 
texture, and color. In some cases, there is also the brand 
component which has its own important semantic and 
visual contributions.

The end product had to take into account both semantic 
and visual aspects when returning the most similar image 
for a given image query. At the same time, it also had to 
be fast to offer real-time service to our clients. Another 
limitation was in the available data itself which only had 
ad category annotations, without additional attribute 
tags.

Fig. 1. Convolutional neural networks enable hierarchical learning 
of features: from more basic like edges and blobs to more abstra-

ct ones, enabling final object categorization.
Image by Maurice Peemen [5].

Fig. 2. Inception module, the basic component of the GoogLeNet 
architecture. The input layer is examined by convolutions of di-

fferent kernel sizes (1 x 1, 3 x 3 and 5 x 5).

Fig. 3. Suggested tree nodes: 1. Machine and tools / Construction 
machinery and tools / Hand tools and tools; 2. Machine and tools 

/ Hand tools

Fig. 4. Suggested tree nodes: 1. Fashion / Apparel / Watches / 
Men’s watch; 2. Fashion / Apparel / Watches / Smartwatch; 3. 

Fashion / Apparel / Watches / Women’s watch
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The approach we used to solve the image similarity 
search problem falls into the general category of rep-
resentation learning [15], and more specifically, into the 
category of searching the appropriate hashing representa-
tion for each image with a data-dependent approach. An 
overview of the most recent data-dependent approaches 
to hashing is provided in [16]. We use a deep learning 
based data-dependent approach for two reasons: utilizing 
all specifics in the data to obtain better descriptors, and 
to have a fast end-to-end solution ready for real-time 
service for our clients.

3.1 Descriptor extraction and binary encoding

The first model followed the idea presented in [17] to 
train a binary descriptor designed to capture category 
level semantics. They added an extra sigmoid fully con-
nected layer in-between the final feature layer and the 
logits layer used for classification, with the idea to train 
that layer so that it captures high-level semantics. Two 
additional training loss components were used: one to 
make sigmoid activations close to 0 and 1, and another 
to make the activations as diverse as possible.

This solution was a good starting point to capture cate-
gory semantics. However, it was soon discovered that 
we would have to do better to capture more visual as-
pects, especially for the fashion use case. Also, unlike 
[17] that used the binarized sigmoid layer for a first, 
coarse-level search and still reverted to a large float de-
scriptor for fine semantic comparison, we desired a ful-
ly binarized solution to meet our run-time requirements.

To accomplish these goals of encoding both visual and 
semantic aspects, and to have a fully binarized descrip-
tor, we investigated other layers in the deep neural net-
work besides the top one meant for semantics. We took 
advantage of the nature of deep learning with convolu-
tional neural networks that was mentioned in the intro-
duction: the network learns the needed concepts hierar-
chically, from simpler to more abstract. The more visual 
aspects were present in the lower parts of the network. 
The final binary descriptor was formed from many dif-
ferent parts of the network, with many tweaks to get the 

satisfactory balance of semantics and visuality. Figure 5. 
illustrates two different combinations: a more semanti-
cally based one and a more visual one.

For faster run-time, we used a simple fully connected 
autoencoder to encode the final binary descriptor into a 
smaller one of size 64. The small one is meant for the 
first coarse-level search and the full one for the final 
ranking. All comparisons are fast on modern CPU archi-
tectures since the Hamming distance (Figure 6.) between 
binary descriptors can be calculated by simple XOR and 
bit count operations.

3.2 Color encoding

Color is a visual aspect that was especially important for 
our users. To enhance their experience, we trained a sep-
arate color encoding model and injected the color encod-
ing layers into the main network for an end-to-end run 
time solution. We used triplet metric learning [18] to 
map perceptually similar colors in CIELAB color space 
to binary descriptors having similar Hamming distances.

3.3 Detecting brands

For some categories, it was especially important to be 
able to retrieve objects which correspond to the same 
brand as the query image. To accomplish this, we used 
a multimodal deep learning approach [19]. We used tex-

Fig. 5. Search results when using image descriptors more focused on semantics (top row) and when using descriptors with more emp-
hasis on visual features (bottom row).

Fig. 7. Search results where brand retrieval was especially important.

Fig. 6. The Hamming distance calculates the number of differing 
bits between two binary descriptors.



16   ����������������������������������������������������������������������������   Engineering Power

tual information from the ads to detect most informative 
words with respect to the category in which the ad was 
placed. In many cases, these were brands along with 
some other typical words that represent types of materi-
als. After that, the network was re-trained with this in-
formation to serve as an additional goal for learning. 
Results turned out to be quite good, especially for cate-
gories like sneakers or women’s purses. Figure 7. illus-
trates similarity search results for men’s Nike sneakers

4. Project results

Our response times are around 100 ms for categorization 
and search-by-image services, and just 50 ms when us-
ing an image that is already present on the site as a search 
query.

The time spent by the user in the ad insertion process, 
from the click on “post a new ad” until inputting text, 
was reduced on average by 43% from 108 seconds to 62 
seconds in the current app implementation. When ana-
lyzing a subset of the data on iOS devices, where image 
upload and processing is much faster, the time was re-
duced by 71% from 89 seconds to 26 seconds. Further 
gains are expected after redesigning the ad placement 
app.

In the old process of manual categorization, the user had 
to do 3.1 clicks on average to reach the desired leaf cat-
egory, assuming that he knew the exact path. With the 
new categorization service, the click path was reduced 
to just 0.4 clicks on average.

Customer satisfaction with the new category suggestion 
service was very high, with 95% of the customers rating 
suggestions and the whole improved user experience as 
excellent or very good.

The Fashion Cam project received a lot of attention from 
the general public and computer vision community with 
the biggest success of winning the best poster award at 
the NVIDIA GTC Conference 2017 in Munich. And 
most importantly, it was a well-received feature by users’ 
feedback.

5. Conclusions and future work

Both fine-grained classification and similarity search re-
trieval are difficult problems to solve, even more so with 
data that lacks additional annotations beside the basic 
single-label annotations. Still, as our projects have 
shown, it is possible to develop both accurate and fast 
services to the satisfaction of the end user.

Future improvements mostly lie in the further utilization 
of the textual data that accompanies each ad image. For 
some categories, e.g. services and jobs, ad titles provide 
more contextual information than the images themselves. 

We are currently developing solutions to improve and 
expand the categorization service to inputs that combine 
both title and image, very similar to the recent advances 
presented in [20] and [21]. Another approach we are 
working on utilizes attention models for weakly super-
vised localization, similarly to ideas presented in [22].

To improve the similarity search service, besides the 
classification approaches, we are also preparing the nec-
essary ground for similarity metric learning by using a 
triplet model, following [23]. Finally, we are also cur-
rently working on using user feedback to improve our 
similarity ranking.
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Abstract

Hyperspectral images are defined as being recorded si­
multaneously in many, narrow, contiguous bands to pro­
vide information on the major features of the spectral 
reflectance of a given object. The images can be visualized 
as a 3-dimensional data set with two spatial and one spec­
tral dimension and the data set is therefore often referred 
to as an image cube. Originally, raw hyperspectral data 
are combined together in an image cube with spatial, tem­
poral and spectral dimension, after the imaging charac­
teristic of the hyperspectral sensor (mostly push-broom 
scanner), and they have to be transformed to geocoded 
hyperspectral cube for all further spatial analysis of hy­
perspectral data. There are several methods to transform 
raw hyperspectral data (raw cube) into geocoded one. 
Because of imaging geometry of the hyperspectral sensor 
(the push-broom scanner), only the parametric geocoding 
methods can be applied directly. The ability of presented 
algorithm will be shown on test data gathered by airborne 
multisensor platform. The spatial accuracy of the geoco­
ded cube will be verified on test-field.

1. Introduction

In the scientific project supported by the European Com-
mission “Airborne minefield area reduction (ARC)”, 
IST–2000-25300, that lasted from year 2001. to 2003., 
were obtained several digital sensors and the acquisition 
systems and was developed the acquisition software RE-
CORDER, [1]. Among them was purchased and later 
used in this project a hyperspectral line scanner V9 (Im-
Spector), with an insolation collecting unit (Fodis) as 
shown in figure 2., for the wavelengths from 430 nm to 
900 nm.

The scanner was used for the acquisition of the reflec-
tivity samples of the mine suspected areas in several 
different types of terrain, whereas the quality of data was 
limited by several factors and also was used for oil spills 
detection, both times as a part of the system for the Mul-
tisensor airborne reconnaissance and surveillance in the 
crisis and the protection of the environment. This was 
the reason to advance the characteristics of the airborne 
hyperspectral remote sensing, by use of V9, in the frame 
of the technological project TP-06/0007-01, in accord-
ance with the foreseen applications [1].

There are foreseen following kinds of applications: a) 
measuring the radiance at discrete samples (static or in a 
direction of flight), b) measuring the reflectance at the 
discrete samples (static or in a direction of flight), c) im­
aging the radiance of the area in a form of the strip in the 
flight direction, d) imaging the reflectance of the area in 
a form of the strip in the flight direction. The basic meas-
uring properties of V9 are determined by its construction. 
A narrow slit (8mm x 0.050 mm) at the front end of the 
optical system enables spectral resolution in nearly 
45  channels in the wavelengths range from 430 nm to 
900  nm. When the scanner is directed at nadir to the 
ground, the area mapped below the scanner is a narrow 
strip that has dimensions 0.333H x 0.00208H, where H is 
relative height of flight, [2]. The digital camera used for 
this purpose was PCO PixelFly 12bit CCD camera system 
with 1280x1024 pixels, pixel size 6.7 μm x 6.7 μm and 
scan area 8.6 x 6.9 mm, [6]. The spatial acuraccy of the 
imaging depend on the movements of the aerial platform, 
accuracy of the positioning and orientation system. While 
during the previous use (2001–2003) were available only 
GPS data, in a novel solution a positioning and orientation 
system is applied, combined with the parametric geocod-
ing system program (PARGE). The advanced features of 
the airborne hyperspectral remote system enable wider 
kinds of the applications, [1].

2. Parametric geocoding

2.1. Input data for parametric geocoding

Navigation data: Position (longitude, latitude and height) 
and attitude (roll, pitch and true heading) stored for each 
line of the scanner image.

Digital elevation model: The DEM has to be given in the 
same coordinate system as the aircraft data.

Image/sensor general information: FOV (field of view) 
and IFOV (instantaneous field of view), scanning fre-
quency, starting time, missing lines, and dimensions of 
the image, [3].

2.2. Geometric algorithm

The parametric processor starts with an estimate of the 
‘thepretic view vector’ ( L

��
) which is the imaginary line 

of sight to the current pixel, oriented from a horizontal 
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aircraft facing direction north, [3]. This vector has to be 
set up in three dimensions to get the ‘effective view vec-
tor’ ( Lt

��
):

	 Lt
��

 = R P H   L
��

	 (1)

where R, P and H are coordinate transformation matrices 
for the roll, pitch and true heading. The equation above 
describes, how the sensor is virtually turned from the 
north looking flight to the actual position. The vector Lt

��
 

is then intersected with the DEM starting at the aircraft 
postion Pa

��
 to obtain the georeferenced pixel position, 

[3]:

	 Ppix
� ���

 = Pa
��

 + Lt
�� h
h Lt( )
� �� 	 (2)

where Dh is the height difference between the aircraft 
position and the DEM intersection point. h Lt( )

���
 is the 

height dimension of the effective view vector, [3].

2.3. Processing algorithm

•	 Calculate the current observation geometry; the ve-
ctor ( L

��
) has its origin at the entrance pupil of came-

ra lens and at its end reaches the Digital Elevation 
Model (DEM)

•	 Find the intersection point on the surface;

•	 Map the image coordinates; the pixel coordinates of 
the image (pixel and line number) are written to an 
array in DEM geometry at the intersection point po-
sition.

•	 Gap fills; triangulation and nearest neighbor tech-
niques are used to create a spatially continuous image

According to Schläpfer, Schaepman and Itten [3] the final 
processing step performs the production of geocoded im-
ages. It is separated from the main processing algorithm. 
This step is applied band by band which makes the pro-
cessing of a band sequential raw data cube very fast.

3.	A ground control point based offset 
	 recalibration

A ground control point (GCP) based offsets estimation 
tool was developed for PARGE application, [3]. The in-
version of the geocoding algorithm allows the calcula-
tion of the aircraft position for each GCP. The trans-
formed view vector is subtracted from the GCP position 
and stretched by the relative height:

	 P P L
h h
h La GCP t
a GCP

t

'

( )
,

��� � ���� ���
���= −

−
	 (3)

where Pa
���

 i PGCP
� ����

 are the position vectors of the aircraft 
and the GCP, with the absolute heights ha  and hGCP , 
[3].

The differences between estimated positions Pa
'
���

 and the 
real navigation data are analyzed statistically to obtain 
the offsets. The offsets can be calculated for roll, pitch, 
heading, x-y navigation, height and/or field of view 
(FOV). The angular and distance offsets for a number of 
GCPs are evaluated statistically to obtain the corre-
sponding offset estimates as follows, [3]:

•	 Roll: average of the angular offsets in scan direction,
•	 Pitch: average of the angular offsets in flight direction,
•	 X-Offset: average of the distance offsets in longitudi-

nal direction,
•	 Y-Offset: average of the distance offsets in latitudinal 

direction,
•	 Heading: minimum correlation of the angular offsets 

in flight direction (pitch) to the pixel distances from 
nadir,

•	 Height: minimum correlation of the angular offsets in 
scanning direction (roll) to the pixel

•	 distances from nadir.

For heading offset estimation, the correlation between 
pitch offset and nadir distance is minimized by iterative-
ly adjusting the true heading average. An analogous pro-
cedure is used for the height with the roll as indicator. 
Since each offset potentially depends on the others, iter-
ations may be done between them; e.g. the heading off-
set may be iterated together with the pitch offset over 
sloped terrain, [3].

3.1. Test Field

The test field on Pula airport was used for GCP calibra-
tion procedure. The hyperspectral scanning of the test 
field was performed in October, 2008. Metal plates and 
crosses were used as signals for ground control points. 
The coordinates of the GCPs are determined in Gauss-
Krüger metric coordinate system, 5th zone, by precise 
tacheometric measurements, relied on relative, static 
GPS-measurements. So, the accuracy of GCPs lies at the 
cm-level.

The handling of the auxiliary data represents the crucial 
issue of the whole geocoding procedure. These data consist Fig. 1. ImSpector V9 with an insolation collecting unit (FODIS), [5]
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of aircraft position and attitude. Since the absolute calibra-
tion of these data is very uncertain, GCPs are used for the 
offset calibration of the same data. Calibration procedure 
based on GCPs was performed in PARGE software.

The first step of the procedure is importing the GCPs. 
Typical text file with the list of GCP coordinates (image 
and ground) is shown in table 1, where the first two 
columns represent the pixel and line number (image co-
ordinates) and the next three columns are X, Y, H (ground 
coordinates).

Table 1. Text file with the GCP coordinates

px ln X Y H

1092.75 616.00 5414712.40 4972979.70 147.47

  719.50 617.75 5414713.13 4972966.96 147.36

  720.00 628.00 5414694.49 4972965.70 147.17

  877.00 628.00 5414693.90 4972971.09 147.25

Table 2.	 Coordinate differences, bias and variance test between the measured GCP coordinates and the ones have been read from the 
geocoded image before calibration

GCP
Coordinate differences

Δy-ny vy*vy Δx-nx vx*vx
Δy [m] Δx [m]

2 –23,70 10,20   0,58 0,34   3,35 11,22

3 –25,43   1,94 –1,14 1,31 –4,91 24,12

7 –23,80 15,81   0,48 0,24   8,96 80,26

8 –24,96 –2,81 –0,67 0,46 –9,66 93,33

11 –22,99   9,45   1,30 1,68   2,60   6,75

12 –23,87   2,67   0,41 0,17 –4,18 17,48

16 –24,44   6,38 –0,16 0,02 –0,47   0,22

17 –25,21   8,67 –0,92 0,86   1,82   3,31

20 –24,70   8,20 –0,42 0,17   1,35   1,82

22 –23,75   8,00   0,54 0,29   1,15   1,32

Σ –242,850 68,51   0,00 5,53   0,00 239,840

bias ny = –24.3m bias nx = +6.8m sy = 0,78 sx =   5.16

Table 3.	 Coordinate differences, bias and variance test between the measured GCP coordinates and the ones have been read from the 
geocoded image after calibration

GCP
Coordinate differences

Δy-ny vy*vy Δx-nx vx*vx
Δy [m] Δx [m]

2 –1,1 –1,1 –0,91 0,82 –1,13 1,27

3   –1,27   0,96 –1,08 1,16   0,94 0,87

7 –0,3   0,49 –0,11 0,01   0,47 0,22

8   –0,44   0,01 –0,25 0,06 –0,02 0,00

11   –0,61 –0,25 –0,42 0,17 –0,28 0,08

12 –1,13   0,93 –0,94 0,87   0,91 0,82

16   0,34   0,32   0,54 0,29   0,30 0,09

17   0,61 –0,27   0,81 0,65 –0,30 0,09

20 1,3 –0,32   1,50 2,24 –0,35 0,12

22   0,65 –0,52   0,85 0,71 –0,55 0,30

Σ –1,95   0,25   0,00 6,98   0,00 3,84

bias ny = –0.2m bias nx = +0.0m sy = 0,88 sx = 0,65
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Determination of attitude offset and position offset are 
two crucial steps in offset calibration. These commands 
are performed iteratively with intention of decreasing 
RMS Errors (both for attitude and position). If these off-
sets are efficiently optimized, our next step is final ge-
ocoding procedure. After this procedure successfully 
finishes, we can read the coordinates of the GCPs from 
the geocoded image. These coordinates of the GCPs be-
fore and after calibration and those determined by 
tacheometric measurements are shown in table 2, where 
are shown coordinate differences before calibration as 
well as their biases and variances. In table 3 are shown 
the coordinate differences after calibration. Both coordi-
nate differences, before and after calibration, are com-
pared in table 4. It clearly shows the great improvement 
of spatial accuracy of the geocoded hyperspectral image 
after calibration.

Table 4.	 Comparison between the coordinate offsets before and 
after calibration

Coordinate differences

before calibration after calibration

Δy [m] Δx [m] Δy [m] Δx [m]

–23,70 10,20 –1,10 –1,10

–25,43   1,94 –1,27   0,96

–23,80 15,81 –0,30   0,49

–24,96 –2,81 –0,44   0,01

–22,99   9,45 –0,61 –0,25

–23,87   2,67 –1,13   0,93

–24,44   6,38   0,34   0,32

–25,21   8,67   0,61 –0,27

–24,70   8,20   1,30 –0,32

–23,75   8,00   0,65 –0,52

4. Conclusion

As mentioned before, the auxiliary data is the crucial 
component that needs to be handled in order to achieve 

acceptable accuracy for intended applications. For this 
purpose these data (aircraft position and attitude) are 
obtained by GPS receiver in absolute operational mode 
and Inertial Measuring Unit. Since the IMU achieves 
better accuracy over the short term and has the higher 
output rate than the GPS receiver, [7], this integration is 
used in calibration procedure for analysis of the position 
and attitude offsets in order to increase accuracy. The 
calibration procedure is based on the GCPs determined 
with cm-level accuracy. As we can see in table 2, there 
is very strong bias shown, especially on the Y-coordi-
nates, that originates from different geodetic datum. Af-
ter calibration, these strong biases on both axes are tak-
en into account and their impact on the geocoded image 
is eliminated. Thus, a great improvement in accuracy 
after calibration is achieved, which now approximately 
lies at the m-level. Better accuracy can be reached by 
using of the more accurate GPS-receiver and applying 
the Kalman-filter on the IMU/GPS integration, [7].
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Abstract

The computer technologies have a crucial role not only 
in the processes of textile and fashion design and the 
related competitive business, but also in fashion design 
education. In the following text we briefly discuss sever­
al key steps during the fashion design. For each step 
discussed, the indispensable usage of various systems 
and methods is pointed out.

1. Introduction

Over the decades, computers and fashion have devel-
oped gradually, changed with time, taste and trend. The 
role of innovative computer technologies in the process-
es of textile and fashion design is one of the indispensa-
ble factors in successful and competitive business of 
textile and clothing manufacturers. The dynamics of 
changes in fashion trends and an increasing interest in 
the clothing market that will reflect a person’s fashion 
identity creates a need for designers to express their cre-
ative potential in accordance with customer needs. The 
application of CAD systems and software packages in-
tended for textile and fashion design with the three-di-
mensional visualization of a model significantly accel-
erates the development of new fashion collections, 
whereby the realistic presentation of a designer’s idea is 
achieved. The analysis of design fit for the selected body 
type is thus made possible. Also anthropometrical meas-
urements as basis for clothing construction became more 
precise, faster and efficient with use of modern 3D body 
scanning technology, encouraging individual approach 
in designing and creating unique garments or small 
made-to-measure collections.

2. Role of ICT in fashion design education

Although, most designers and fashion design colleges 
initially use traditional design methods, including hand 
drawing and manual flat pattern construction, cut-
ting-edge education focuses on computer-aided methods 
of design. Computer-aided design (CAD) is the use of 
computer technology for the process of design and de-
sign-documentation. CAD may be used to design curves 
and figures in two-dimensional (2D) space; or curves, 
surfaces, and solids as three-dimensional (3D) objects. 
CAD allows designers to view designs of clothing on 

virtual models in different sizes and with application of 
various colors and textures, thus saving time by requir-
ing fewer adjustments of prototypes and samples later. 
It is also possible to design textile products for other 
fields, like automotive and furniture industry, Fig. 1. In-
troducing this technological aspect can help students to 
understand designing process a lot better and to release 
their creativity to the maximum [1].

3. 3D Body Scanning

The application of the 3D body scanner has an increasing 
implementation in the field of body measurement for 
garment construction [2]. Beside the linear body meas-
urements that are most commonly used data in the cloth-
ing industry, 3D scanning is used to obtain data on body 
shape, anthropometric relationships of individual body 
parts, deviations from the normal proportions and body 
posture characteristics [3,4]. In this manner, all relevant 
data necessary for Computer-aided design and modifica-
tion of garment patterns according to the individual body 
anthropometric characteristics are determined. Interna-
tional standard ISO 20 685 has been developed to ensure 
the comparability of body measurements defined by ISO 
7250 (Basic Human Body Measurements for Technolog-
ical Design) and ISO 8559 (Garment Construction and 
Anthropometric Surveys-Body Dimensions) obtained 
using various 3D body scanners.

Fig. 1. 3D prototypes of clothing, in the furniture and automotive 
sector, in various colours and patterns
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However, for performing 3D garment simulations it is 
also necessary to ensure harmonization between the an-
thropometric measurements determined by 3D body 
scanner and the corresponding measures of an avatar in 
the CAD system, Fig. 2. and Fig. 3. Most existing com-
puter programs for 3D virtual garment use paramet-
ric human models or avatars, with different number of 
body measurements that can be interactively customized 
[5].

The Vitus Smart 3D body scanner installed at Universi-
ty of Zagreb Faculty of Textile Technology allows users 
to scan an object in the area of 1,200 x 800 mm and 2100 
mm in height. Scanning is performed by the system of 
8 cameras and lasts 10 seconds, whereby 500,000 to 
600,000 spatial coordinates of the scanned body are ex-
tracted. Data processing takes about 40 seconds [6]. Soft-
wares ScanWorx or Anthroscan are used for human body 
measurements, necessary for the implementation in the 
computer program for the garment pattern alteration ac-

cording to the individual characteristics. The use of a 3D 
scanners and accompanying computer program also en-
ables precise 3D body model measurements in dynamic 
postures, Fig. 4., where the dimensions of the surface 
parts and segments volumes can be determined in order 
to achieve high garment fit and to ensure the comfort in 
dynamic conditions of use.

4.	3D flattening method for designing tight fit 
	 clothing

Tight-fit clothing items represent a specific group of 
products intended for wearing close to the body. When 
using 3D flattening method for 3D construction of 
tight-fit clothing it is necessary to take in consideration 
physical and mechanical properties of the material from 
which the clothing will be made. It requires compre
hensive knowledge of fabric behaviour, tensile and 
shear  properties, its behaviour on the body as well 

Fig. 3. Harmonization the waist girth and determination of the 
cross-section at the given position

Fig. 2. Body posture adjustment: a) avatar, b) scanned body model 

Fig. 4. Position of taken measurements in static and dynamic position
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as  constructional and functional requirements imposed 
on the clothing. Application of 3D flattening method for 
the construction of a female diving suit [7], involves 
drawing and creating pattern lines directly on the surface 
of a computer body model, separation of discrete 3D sur-
faces and transformation into 2D cutting parts, Fig. 5.

5. 3D simulation of model prototypes

Virtual garment simulation is the result of a large com-
bination of techniques that have dramatically evolved 
during the last two decades [8]. Besides the mechanical 
models used within existing mechanical engineering for 
simulating deformable structures, many new challenges 
arise from versatile nature of textile fabrics. Therefore, 
garment simulation is based on the development of 
the  efficient mechanical simulation models, which 
support the reproduction of the specific non-linear me-
chanical properties of textile materials. In addition, the 
garments interact strongly with the body, as well as with 
other garments layers. This requires the development 
of  the advanced methods efficiently detecting the 
geometrical contacts constraining the behaviour of the 
fabric and integrated them into the mechanical model 
[9,10]. In order to verify the patterns developed by flat-
tening method, 3D simulations of diving suit models 
have been performed with physical and mechanical 
properties of neoprene material applied to the patterns, 
Fig. 6 and 7.

Analysis of computer prototype showed positive assess-
ment of 3D flattening method application for obtaining 
precise garment pattern suitable for production of a real 
prototype [11]. Material stretch analysis on computer 
prototype and verification of real garment prototype by 
professional female diver in conditions of use, confirmed 
that method enables development of functional tight-fit 
clothing.
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Abstract

In this paper we present our 3D scanning system for the 
surface reconstruction of the entire human body. Scan­
ner is based on the structured light fringe profilometry 
approach and is assembled from only few basic compo­
nents – three projectors and six cameras. These compo­
nents are grouped in three scanning units which can 
simultaneously illuminate person from all sides and cre­
ate a full 3D body model. On the application side, we 
propose the analysis of the human torso (back surface) 
with a goal to assist the detection and assessment of 
possible spinal deformities or other muscular changes 
present on the back surface. We proposed a method for 
the automatic detection of the symmetry curve based on 
the analysis of local deviations of surface curvatures. 
Presented results demonstrate that proposed method is 
comparable with commercial 3D systems.

1. Introduction

Structured light (SL) profilometry is one popular ap-
proach to the 3D surface reconstruction. The object’s 
surface is illuminated using a pattern with a coded struc-
ture and then captured by one or more cameras. The 
decoding between projected and captured pattern struc-
ture enables the reconstruction of the scanned object. In 
order to reconstruct the entire surface of the human body, 
different body-regions can be either illuminated sequen-
tially (by employing projectors in turns) [1][2] or simul-
taneously [3]–[5] where multiple projectors illuminate 
the subject at the same time from different positions. 
Downside of the sequential multi-projector SL recon-
struction is extended scanning time (that grows linearly 
with the number of projectors used) meaning that subject 
must remain still for longer time which may be uncom-
fortable. On the other hand, simultaneous multi-projec-
tor SL reconstruction approaches must efficiently solve 
the problem of the inter-projector interference, which 
usually requires projecting specifically designed patterns 
and consequently using some nonconventional decoding 
methods [3][4]. Fringe projection profilometry is very 
popular SL approach for 3D surface reconstruction, be-
cause it’s robustness – it is insensitive to ambient illu-
mination, limitations on the colour of the scanned object 
are practically negligible, it can produce high-resolution 
scans and, depending on the decoding method, the rela-
tive positioning of the camera and the projector is not 

strictly conditioned (having in mind that they must retain 
a common FOV). In order to preserve the robustness 
property of the aforementioned fringe projection pro-
filometry, in our opinion the method of choice for the 
surface reconstruction is temporal multiplexing approach 
proposed in our previous work [5]. This approach does 
not impose a limit on the number of projectors used nor 
on theirs placement and thus enables construction of 
complex scanners with no blind spots. The only prereq-
uisite for previously mentioned simultaneous projection 
approach is the synchronization of projectors and cam-
eras.

The second part of the paper describes our analysis of 
the reconstructed human body. Proposed analysis is fo-
cused on the human torso, i.e. the analysis of the human 
back surface topography and geometry in order to detect 
and assess the possible deformities of the human spine 
or other muscular bulges that change the symmetry in 
patient’s posture and consequently the surface of the 
back. Bearing in mind that, in healthy subjects, the spine 
is one of the main indicators of the back surface sym-
metry, the first step in most of analysis methods is the 
estimation of the spinal curve on the back surface. The 
easiest approach is using reflective adhesive markers and 
marking a certain number of the vertebrae and then in-
terpolate the spine curve, but more recent methods pro-
pose using a (semi-) automatic detection of the asymme-
try curve. There are many different approaches to this 
problem – analysing the depth of the surface profiles, 
finding maxima in the computed surface curvature [6], 
or defining an asymmetry function as a left-right differ-
ences of the surface curvature [7] or surface normals [8] 
distribution over the horizontal profiles of the human 
back. Our work extends the idea of [7], using multi-scal-
ing of the asymmetry function which effectively filters 
minor asymmetries inconsistent over multiple scales.

2. Multi-Projector 3D Scanning System

Our 3D scanning system is based on multi-projector 
multi-camera temporal multiplexing fringe projection 
profilometry. Fringes used for each projector are care-
fully designed – temporal phase shifts of each fringe set 
are selected to form an orthogonal basis of the discrete 
Fourier transform (DFT). That means that for each of P 
projectors we generate a set of N P≥ +2 1 pattern im-
ages:
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For each camera we decode a set of N images in a 
following manner. Firstly, we decompose each set using 
the Fast Fourier transform as explained in [5]. By 
comparing the magnitude of the k-th spectral component 
to some preselected threshold, we determine the area 
illuminated by the k-th projector and afterwards the 
wrapped phase fk of k-th projector can be retrieved 
as  the negative phase of the k-th spectral component. 
Here, we omit details regarding wrapped phase defini-
tion but it can be found in our previous paper [5]. Un-
wrapping of the wrapped phase can be done using any 
of the unwrapping algorithms [9], and the final 3D re-
construction is obtained with the triangulation using cor-
responding camera projector coordinate pairs. Addition-
ally, our post-processing includes some filtering and 
creating a mesh for the better visual representation of 
results.

An important part of this reconstruction approach is the 
adequate synchronization between cameras and projec-
tors. Based on our previous work [10], we chose the 
software synchronization (opposed to the more expen-
sive hardware synchronization) which relies on the pre-
cise timing of projection and acquisition steps.

3. Back Surface Analysis

Although our 3D scanning system can produce a 3D re-
construction of the entire human body we focused our 
3D analysis only on the back surface. As stated in the 
introduction, an important part of the assessment of pos-
sible spinal deformities is the estimation of the spinal 
curve or some other correlated curve on the surface of 
the back.

Our proposed method is based on the analysis of distri-
butions of surface curvatures and on redefining an asym-
metry function. The input to the procedure is a point 
cloud with associated surface normals representing the 
back side of the subject’s torso. This can be achieved 
using some 3D body segmentation method or manually 
by selecting the region of interest. Using precomputed 
surface normals and the reconstructed dense point cloud, 
surface curvatures (principal curvatures and principal 
directions) can be estimated [11].

Hierholzer [7] defined the surface asymmetry function 
as a sum of local deviations of the surface curvature in 
some predefined neighbourhood of the chosen point. We 
adopted this definition, and for each horizontal slice of 
the 3D back surface, we computed the symmetry func-
tion in every point interpolated over that slice. The result 
is two-dimensional symmetry function map. A valid the-
oretical assumption is that the symmetry function will 
achieve maximal values at points which represent the 
symmetry curve. However, the symmetry map produces 
many local maxima which need to be filtered in order to 
achieve automatic detection of the symmetry curve. 
Therefore, we propose multi-scaling of the symmetry 
function – accumulation of multiple symmetry functions 
computed over different neighbourhoods, which effec-
tively filter minor symmetries which are inconsistent 
over multiple scales.

4. Results and Discussion

Our 3D scanning system is comprised of three units – 
each equipped with one projector and two cameras. One 
projector is Canon LV-WX310ST and two are Acer 
S1383WHne. All cameras are PointGreys’ Grasshopper3 
GS3-U3-23S6C. Four cameras are equipped with Fuji-
non HF12.5SA-1 lenses and two are equipped with 
Kowa LM8JCM lenses. With the maximal speed of 
20  FPS one recording takes about 0.7s, but for more 
robust and higher quality reconstructions we propose 
using three frequencies (w) with seven shifts (j) per fre-
quency (N  =  42) for each projector coordinate which 
results in acquisition time of 2.1s. The 3D scanning sys-
tem setup is shown in Figure 1. We used a double-sided 
calibration board with circular hexagonal grid pattern 

Fig. 1. Our 3D scanning system. Note the inter-projector interfe-
rence pattern on the mannequin and on the floor
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and coded markings in order to achieve simple and fast 
geometric calibration of all three scanning units. An ex-
ample of the final surface reconstruction for the scanned 
mannequin is shown in Figure 2. The 3D mannequin 
model is pictured as a mesh surface for better visual 
representation.

We compared the proposed method for the back surface 
analysis with a commercial system for the 3D spine and 
posture analysis – Diers Formetric [12]. We used point 
clouds reconstructed using a Diers system as our input 
and applied the proposed method for the detection of the 
symmetry curve. The comparison with the output of the 
Diers system (so-called cls curve) showed that methods 
are comparable within limits of physicians’ palpation 
error (5mm) as shown in Figure 3. The contribution 
of  our proposed multi-scaling of symmetry functions 
is  presented in Figure 4. Using this approach we are 
able  to compute the symmetry curve without using 
any predefined models for the curvature of the human 
spine.

5. Conclusion

We have proposed a 3D human body scanning system 
which can be used for the analysis of the human torso, 
specifically for the back surface analysis. The experi-

Fig. 2. Resulting 3D mesh of a mannequin after final post-proce-
ssing.

Fig. 3. Comparison of the proposed method (blue line, symmetry curve) and Diers Formetric resuts (red line, csl curve) in the back 
shape analysis. (a) Comparison of detected curves in different views (axial, sagittal, coronal, and from side). (b) Detected lines plotted 

on the depth map of the back surface. (c) Detected lines plotted over the input point cloud obtained with Diers Formetric system.

Fig. 4. Symmetry map generated using one scale (left) and using the proposed multi-scaling approach (right). Note how local maxima 
representing the “true” symmetry curve are much more prominent.
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ments show that our scanner is very robust and can col-
lect data for a dense 3D reconstruction of the entire hu-
man body in only two seconds. The reconstructed surface 
of the human back can then be analysed using proposed 
method for the detection of the symmetry curve which 
does not require any predefined models thanks to the 
proposed multi-scaling approach. The results are very 
promising for further extensions of the method because 
current results are already comparable with the commer-
cial 3D systems.

References

[1]	 R. R. Garcia and A. Zakhor, “Markerless Motion Capture 
with Multi-view Structured Light,” Electron. Imaging, vol. 
2016, no. 21, pp. 1–7, Feb. 2016.

[2]	 W.-H. Su  et al., “Projected fringe profilometry with multiple 
measurements to form an entire shape,” Opt. Express, vol. 
16, no. 6, p. 4069, Mar. 2008.

[3]	 S. Woolford and I. S. Burnett, “Toward a one shot multi-pro-
jector profilometry system for full field of view object meas-
urement,” in 2014 IEEE Int. Conf. Acoust. Speech Signal 
Process., 2014, pp. 569–573.

[4]	 R. Furukawa et al., “Multiview projectors/cameras system 
for 3D reconstruction of dynamic scenes,” in 2011 IEEE 
ICCV Workshops, 2011, pp. 1602–1609.

[5]	 T. Petkovic,  et al., “Efficient Separation Between Projected 
Patterns for Multiple Projector 3D People Scanning,” in 
2017 IEEE ICCV Workshops, 2017, pp. 815–823.

[6]	 P. Poredoš, D. Čelan, J. Možina, and M. Jezeršek, “De­
termination of the human spine curve based on laser trian-
gulation,” BMC Med. Imaging, vol. 15, no. 1, p. 2, Dec. 
2015.

[7]	 E. Hierholzer, “Analysis Of Left-Right Asymmetry Of The 
Back Shape Of Scoliotic Patients,” in Proc. SPIE, 1986, vol. 
602, no. Biostereometrics ’85, p. 266.

[8]	 L. Di Angelo, P. Di Stefano, and A. Spezzaneve, “A method 
for 3D detection of symmetry line in asymmetric postures,” 
Comput. Methods Biomech. Biomed. Engin., vol. 16, no. 11, 
pp. 1–8, 2012.

[9]	 C. Zuo, et al., “Temporal phase unwrapping algorithms for 
fringe projection profilometry: A comparative review,” Opt. 
Lasers Eng., vol. 85, pp. 84–103, Oct. 2016.

[10]	 T. Petkovic, et al., “Multi-Projector Multi-Camera Struc-
tured Light 3D Body Scanner,” in Proceedings of 3DBODY.
TECH 2017, Montreal QC, Canada, 11-12 Oct., 2017, pp. 
319–326.

[11]	 R. C. Wilson and E. R. Hancock, “Consistent topographic 
surface labelling,” Pattern Recognit., vol. 32, no. 7, pp. 
1211–1223, Jul. 1999.

[12]	 “DIERS biomedical solutions.” [Online]. Available: http://
www.diersmedical.com/. [Accessed: 20-Mar-2018].

Engineering Power – Bulletin of the Croatian Academy of Engineering	 Vol. 13(2) 2018 – ISSN 1331-7210
Publisher: Croatian Academy of Engineering (HATZ), 28 Kačić Street, 
          P.O. Box 59, HR-10001 Zagreb, Republic of Croatia
Editor-in-Chief: Prof. Vladimir Andročec, Ph.D., President of the Academy 
          retired Full Professor with tenure, University of Zagreb, Faculty of Civil Engineering
Editor: Prof. Zdravko Terze, Ph.D., Vice-President of the Academy 
          University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture
Guest-Editor: Prof. Tomislav Pribanić, Ph.D., University of Zagreb, Faculty of Electrical Engineering and Computing
Editorial Board: Prof. Vladimir Andročec, Ph.D., Prof. Zdravko Terze, Ph.D., Prof. Slavko Krajcar, Ph.D.
Editorial Board Address: Croatian Academy of Engineering (HATZ), „Engineering Power“ – Bulletin of the Croatian Academy 
          of Engineering, Editorial Board, 28 Kačić Street, P.O. Box 59, HR-10001 Zagreb, Republic of Croatia
E-mail: hatz@hatz.hr
Graphical and Technical Editor: Vladimir Pavlić, Dipl. Eng. (GRAPA, Ltd., Zagreb)	 Press: Tiskara Zelina, Ltd., Zelina
Proof-reader: Miroslav Horvatić, MA	 Circulation: 300


